Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro.
نویسندگان
چکیده
The role of enkephalin and the opioid receptors in modulating GABA release within the rat globus pallidus (GP) was investigated using whole-cell patch recordings made from visually identified neurons. Two major GP neuronal subtypes were classified on the basis of intrinsic membrane properties, action potential characteristics, the presence of the anomalous inward rectifier (Ih), and anode break depolarizations. The mu opioid receptor agonist [D-Ala2-N-Me-Phe4-Glycol5]-enkephalin (DAMGO) (1 microM) reduced GABAA receptor-mediated IPSCs evoked by stimulation within the striatum. DAMGO also increased paired-pulse facilitation, indicative of presynaptic mu opioid receptor modulation of striatopallidal input. In contrast, the delta opioid agonist D-Pen-[D-Pen2, 5]-enkephalin (DPDPE) (1 microM) was without effect. IPSCs evoked by stimulation within the GP were depressed by application of [methionine 5']-enkephalin (met-enkephalin) (30 microM). Met-enkephalin also reduced the frequency, but not the amplitude, of miniature IPSCs (mIPSCs) and increased paired-pulse facilitation of evoked IPSCs, indicative of a presynaptic action. Both DAMGO and DPDPE reduced evoked IPSCs and the frequency, but not amplitude, of mIPSCs. However, spontaneous action potential-driven IPSCs were reduced in frequency by met-enkephalin and DAMGO, whereas DPDPE was without effect. Overall, these results indicate that presynaptic mu opioid receptors are located on striatopallidal terminals and pallidopallidal terminals of spontaneously firing GP neurons, whereas presynaptic delta opioid receptors are preferentially located on terminals of quiescent GP cells. Enkephalin, acting at both of these receptor subtypes, serves to reduce GABA release in the GP and may therefore act as an adaptive mechanism, maintaining the inhibitory function of the GP in basal ganglia circuitry.
منابع مشابه
Presynaptic versus postsynaptic localization of mu and delta opioid receptors in dorsal and ventral striatopallidal pathways.
Parallel studies have demonstrated that enkephalin release from nerve terminals in the pallidum (globus pallidus and ventral pallidum) can be modulated by locally applied opioid drugs. To investigate further the mechanisms underlying these opioid effects, the present study examined the presynaptic and postsynaptic localization of delta (DOR1) and mu (MOR1) opioid receptors in the dorsal and ven...
متن کاملOpioid modulation of ventral pallidal afferents to ventral tegmental area neurons.
Activation of mu opioid receptors within the ventral tegmental area (VTA) can produce reward through the inhibition of GABAergic inputs. GABAergic neurons in the ventral pallidum (VP) provide a major input to VTA neurons. To determine the specific VTA neuronal targets of VP afferents and their sensitivity to mu opioid receptor agonists, we virally expressed channel rhodopsin (ChR2) in rat VP ne...
متن کاملRegulation of Inhibitory Synapses by Presynaptic D4 Dopamine Receptors in Thalamus
Govindaiah G, Wang T, Gillette MU, Crandall SR, Cox CL. Regulation of inhibitory synapses by presynaptic D4 dopamine receptors in thalamus. J Neurophysiol 104: 2757–2765, 2010. First published September 8, 2010; doi:10.1152/jn.00361.2010. Dopamine (DA) receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five DA receptor subtypes, the D4 subtype is of p...
متن کاملPresynaptic actions of D2-like receptors in the rat cortico-striato-globus pallidus disynaptic connection in vitro.
The cerebral cortex, the neostriatum (Str), and the external segment of the globus pallidus (GPe) form a cortico-Str-GPe disynaptic connection, which is one of the major connections in the basal ganglia circuitries and a target of dopamine modulation. The aim of this study was to examine the actions of D2-like dopamine receptors (D2LRs) in this connection using rat brain slice preparations. Ele...
متن کاملDynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat.
The opioids contained in striato-pallidal axons are thought to play a significant role in motor control. We examined post- and presynaptic effects of the kappa (kappa)-receptor agonist dynorphin A (1-13) (DYN13) on the globus pallidus (GP) neurons in rat brain slice preparations using the whole cell recording method. DYN13 hyperpolarized and decreased the input resistance of approximately one-q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 12 شماره
صفحات -
تاریخ انتشار 1999